216 research outputs found

    Tuning the proximity effect in a superconductor-graphene-superconductor junction

    Full text link
    We have tuned in situ the proximity effect in a single graphene layer coupled to two Pt/Ta superconducting electrodes. An annealing current through the device changed the transmission coefficient of the electrode/graphene interface, increasing the probability of multiple Andreev reflections. Repeated annealing steps improved the contact sufficiently for a Josephson current to be induced in graphene.Comment: Accepted for publication in Phys. Rev.

    Josephson effect in graphene SBS junctions

    Full text link
    We study Josephson effect in graphene superconductor- barrier- superconductor junctions with short and wide barriers of thickness dd and width LL, which can be created by applying a gate voltage V0V_0 across the barrier region. We show that Josephson current in such graphene junctions, in complete contrast to their conventional counterparts, is an oscillatory function of both the barrier width dd and the applied gate voltage V0V_0. We also demonstrate that in the thin barrier limit, where V0V_0 \to \infty and d0d \to 0 keeping V0dV_0 d finite, such an oscillatory behavior can be understood in terms of transmission resonance of Dirac-Bogoliubov-de Gennes quasiparticles in superconducting graphene. We discuss experimental relevance of our work.Comment: 7 Pg., 6 Figs, extended version submitted to PR

    The Kondo Effect in the Presence of Magnetic Impurities

    Full text link
    We measure transport through gold grain quantum dots fabricated using electromigration, with magnetic impurities in the leads. A Kondo interaction is observed between dot and leads, but the presence of magnetic impurities results in a gate-dependent zero-bias conductance peak that is split due to an RKKY interaction between the spin of the dot and the static spins of the impurities. A magnetic field restores the single Kondo peak in the case of an antiferromagnetic RKKY interaction. This system provides a new platform to study Kondo and RKKY interactions in metals at the level of a single spin.Comment: 5 pages, 4 figure

    Electron transport through single Mn12 molecular magnets

    Full text link
    We report transport measurements through a single-molecule magnet, the Mn12 derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor geometry. Thiol groups connect the molecule to gold electrodes that are fabricated by electromigration. Striking observations are regions of complete current suppression and excitations of negative differential conductance on the energy scale of the anisotropy barrier of the molecule. Transport calculations, taking into account the high-spin ground state and magnetic excitations of the molecule, reveal a blocking mechanism of the current involving non-degenerate spin multiplets.Comment: Accepted for Phys. Rev. Lett., 5 pages, 4 figure

    Proximity-induced superconductivity in graphene

    Full text link
    We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible range of parameters. At low temperatures, T<<T_c, and zero magnetic field, the density of states is characterized by a small gap E_g<T_c resulting from the collective proximity effect. Transverse magnetic field H_g(T) E_g is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field H_{g2}(T).Comment: 4 pages, 3 figure

    A self-consistent theory for graphene transport

    Full text link
    We demonstrate theoretically that most of the observed transport properties of graphene sheets at zero magnetic field can be explained by scattering from charged impurities. We find that, contrary to common perception, these properties are not universal but depend on the concentration of charged impurities nimpn_{\rm imp}. For dirty samples (250×1010cm2<nimp<400×1010cm2250 \times 10^{10} {\rm cm}^{-2} < n_{\rm imp} < 400 \times 10^{10} {\rm cm}^{-2}), the value of the minimum conductivity at low carrier density is indeed 4e2/h4 e^2/h in agreement with early experiments, with weak dependence on impurity concentration. For cleaner samples, we predict that the minimum conductivity depends strongly on nimpn_{\rm imp}, increasing to 8e2/h8 e^2/h for nimp20×1010cm2n_{\rm imp} \sim 20 \times 10^{10}{\rm cm}^{-2}. A clear strategy to improve graphene mobility is to eliminate charged impurities or use a substrate with a larger dielectric constant.Comment: To be published in Proc. Natl. Acad. Sci. US

    Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves

    Get PDF
    We have fabricated a multiterminal lateral mesoscopic metallic spin valve demonstrating spin precession at room temperature (RT), using tunnel barriers in combination with metallic ferromagnetic electrodes as a spin injector and detector. The observed modulation of the output signal due to the spin precession is discussed and explained in terms of a time-of-flight experiment of electrons in a diffusive conductor. The obtained spin relaxation length lambda(sf)=500 nm in an aluminum strip will make detailed studies of spin dependent transport phenomena possible and allow one to explore the possibilities of the electron spin for-new electronic applications at RT. (C) 2002 American Institute of Physics. [DOI: 10.1063/1.1532753].</p

    Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect

    Get PDF
    The ability to make electrical contact to single molecules creates opportunities to examine fundamental processes governing electron flow on the smallest possible length scales. We report experiments in which we controllably stretch individual cobalt complexes having spin S = 1, while simultaneously measuring current flow through the molecule. The molecule's spin states and magnetic anisotropy were manipulated in the absence of a magnetic field by modification of the molecular symmetry. This control enabled quantitative studies of the underscreened Kondo effect, in which conduction electrons only partially compensate the molecular spin. Our findings demonstrate a mechanism of spin control in single-molecule devices and establish that they can serve as model systems for making precision tests of correlated-electron theories.Comment: main text: 5 pages, 4 figures; supporting information attached; to appear in Science
    corecore